بررسی برهم‌کنش strain IR-1395 Rhodotorula toruloides با جیوه به‌منظور فرایندهای زیست‌پالایی جیوه از محیط‌های آبی

نوع مقاله : پژوهشی- فارسی

نویسندگان

1 کارشناس ارشد گروه زیست فناوری میکروبی، دانشکده علوم پایه و فناوری‌های نوین زیستی، دانشگاه علم و فرهنگ، تهران، ایران

2 استاد گروه میکروبیولوژی، دانشکده علوم زیستی، دانشگاه الزهراء (س)، ونک، تهران ، ایران

3 استادیار پژوهشکده مواد و سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، تهران، ایران

4 کارشناس ارشد گروه میکروبیولوژی، دانشکده علوم زیستی، دانشگاه الزهراء (س)، ونک، تهران ، ایران

چکیده

مقدمه: امروزه، آلودگی فلزات سنگین یکی از مهم‌ترین مشکلات محیط‌زیست است و باتوجه‌به هزینه‌بربودن روش‌های متداول پالایش، استفاده از زیست‌تودۀ میکروبی برای پالایش فلزات سنگین پیشنهاد می‌شود. مطالعۀ حاضر با هدف ارزیابی میان‌کنش مخمر رودوترولا تورلوئیدس سویۀ IR-1395 با جیوه انجام شد.
مواد و روش‏‏ها: در مطالعۀ حاضر، میزان رشد و انواع برهم‌کنش سویۀ IR-1395 با جیوه در محیط ساکارز‌براث‌ بررسی و مقدار جیوۀ تجمع‌یافته در محیط و در مخمر به روش اسپکتروفتومتری اندازه‌گیری شد؛ سپس به‌منظور تعیین بهترین شرایط جذب زیستی، تأثیر شاخص‌های اسیدیته، غلظت جیوه، غلظت زیست‌توده، زمان مجاورسازی و دما سنجیده شد؛ همچنین میزان جذب توسط مخمر تیمارشده با 2 و 4 دی‌نیتروفنل و اتوکلاو بررسی و درنهایت، جذب زیستی جیوه توسط مخمر با میکروسکوپ الکترونی نگارۀ مجهز به طیف‌سنجی پراش انرژی پرتو ایکس بررسی شد.
نتایج: بررسی‌ها نشان دادند بیشترین رشد مخمر طی 36 ساعت رخ می‌دهد و پس‌از آن، وارد فاز سکون می‌شود؛ همچنین این سویه قادر به جذب (جذب زیستی و تجمع زیستی) 86/61 درصد جیوه و فرّارسازی 17/10 درصد جیوه از محیط دارای 10 میلی‌گرم‌برلیتر کلریدجیوه طی هفت روز است. در بررسی‌ عوامل تأثیرگذار بر جذب زیستی جیوه مشخص شد اسیدیتۀ بهینه برای این مخمر برابر 4 است و بیشترین میزان جذب در غلظت 300 میلی‌گرم‌برلیتر جیوه و در دمای 15 درجۀ سانتی‌گراد به‌مدت10 دقیقه مشاهده می‌شود. در بررسی اثر تیمار 2 و 4 دی‌نیتروفنل و اتوکلاو مشخص شد میزان جذب توسط مخمر تیمارشده کاهش می‌یابد. نتایج طیف‌سنجی پراش انرژی پرتو ایکس جذب زیستی جیوه توسط مخمر را تأیید کردند.
بحث و نتیجه‏گیری: بررسی انواع برهم‌کنش‌های سویۀ IR-1395 با جیوه و پتاسیل آن در جذب زیستی نشان داد این سویه، ریزموجود باارزشی در فرایندهای زیست‌پالایی جیوه از محیط‌های آبی آلوده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating Mercury Interactions of Rhodotorula Toruloides IR-1395 for Mercury Bioremediation Processes in Aquatic Environments

نویسندگان [English]

  • Niosha Tavassoli Tabatabaeei 1
  • Mohammad Reza Soudi 2
  • parisa Tajer-Mohammad-Ghazvini 3
  • Shaghayegh Nasr 3
  • Marziyeh Bahrami-Bavani 4
1 Department of Biotechnology, Faculty of Basic Sciences and Advanced Technologies in Biology, Science and Culture University, Tehran, Iran
2 Department of Microbiology, Faculty of Biological Science, Alzahra University, Tehran, Iran
3 Materials and Nuclear Fuel Research School Nuclear Science and Technology Research Institute, Tehran, Iran
4 Department of Microbiology, Faculty of Biological Science, Alzahra University, Tehran, Iran
چکیده [English]

Introduction: Nowadays, heavy metals pollution is one of the most important environmental problems. Due to the high cost of common refining methods, the use of microbial biomass is recommended to clean up heavy metals. The aim of this study was the evaluation of interactions of Rhodoterula toruloides strain IR-1395 with mercury.
Materials and methods: In this study, the growth rate and interactions of strain IR-1395 with mercury in Sucrose Broth medium were investigated and the amount of mercury accumulated was measured using the Spectrophotometry method. Then, in order to determine the best biosorption conditions, the effect of parameters such as pH, mercury concentration, biomass concentration, contact time and temperature were measured. Also, the biosorption was investigated by treated cells with 2, 4 dinitrophenol and autoclave. Finally, the biosorbent was characterized by Scanning Electron Microscope with Energy Dispersive X-Ray Analysis.
Results: Studies showed that the maximum growth rate of strain IR-1395 was after 36h and then it enters the stationary phase. Also, this strain was able to the biosorption and bioaccumulation (61.86%) and 10.17% biovolatilization of mercury from the medium at the concentration of 10 mg/l of chloride mercury during seven days. In study of factors affecting on the mercury biosorption, it is indicated that the optimal pH was 4. The highest biosorption was observed at 300 mg /l of mercury in 10 minutes at 15 ˚C. Mercury adsorption using treated biomass by autoclaved and 2,4 dinitrophenoltreatment has reduced than control samples. Finally, the results of the EDX confirmed the biosorption of mercury by this yeast.
Discussion and conclusion: By study of the various interactions of strain IR-1395 with mercury and its potential in biosorption, it was found that this strain is a valuable microorganism in mercury bioremediation processes from contaminated aquatic environments.

کلیدواژه‌ها [English]

  • Bioaccumulation
  • Biosorption
  • Mercury
  • Volatilization
  • Rhodoterula Toruloides
(1) Oladipo ME., Adelaja OA. Biosorption of mercury (II) ions, congo red dye and their binary mixture using chemically activated mango leaves powder. Journal of Environment Protection and Sustainable Development 2019; 5(3): 107-117.
(2) Kadirvelu K., Thamaraiselvi K., Namasivayam C. Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresource Technology 2001; 76(1): 63-65.
(3) Williams C., Aderhold D., Edyvean R. Comparison between biosorbents for the removal of metal ions from aqueous solutions. Water Research 1998; 32(1): 216-224.
(4) Çetin K., Türkmen D., Qureshi T., Sağlam N., Denizli A. Phanerochaete chrysosporium loaded cryogel column for biosorption of mercury (II) ions from aqueous solutions. Hacettepe Journal of Biology and Chemistry 2016; 44: 77-86.
(5) Wei Q., Yan J., Chen Y., Zhang L., Wu X., Shang S., et al. Cell surface display of MerR on Saccharomyces cerevisiae for biosorption of mercury. Molecular Biotechnology 2018; 60(1): 12-20.
(6) Hadiani MR., Khosravi-Darani K., Rahimifard N., Younesi H. Assessment of mercury biosorption by Saccharomyces cerevisiae: Response surface methodology for optimization of low Hg (II) concentrations. Journal of environmental chemical engineering 2018; 6(4): 4980-4987.
(7) Amin F., Talpur FN., Balouch A., Chandio ZA., Surhio MA., Afridi HI. Biosorption of mercury (II) from aqueous solution by fungal biomass Pleurotus eryngii: Isotherm, kinetic, and thermodynamic studies. Environmental Progress & Sustainable Energy 2016; 35(5): 1274-1282.
(8) Naja GM., Murphy V., Volesky B. Biosorption, metals. Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology 2009: 1-29.
(9) Čerňanský S., Urík M., Ševc J., Khun M. Biosorption and biovolatilization of arsenic by heat-resistant fungi (5 pp). Environmental Science and Pollution Research 2007; 14(1): 31-35.
(10)           Casagrande GCR., dos Reis C., Arruda R., de Andrade RLT., Battirola LD. Bioaccumulation and biosorption of mercury by salvinia biloba raddi (Salviniaceae). Water, Air, and Soil Pollution 2018; 229(5): 166.
(11)           Saranya K., Sundaramanickam A., Shekhar S., Swaminathan S. Biosorption of mercury by Bacillus thuringiensis (CASKS3) isolated from mangrove sediments of southeast coast India. Indian Journal of Geo-Marine Sciences 2019; 48: 143-150.
(12)           Beni AA., Esmaeili A. Biosorption, an efficient method for removing heavy metals from industrial effluents: A review. Environmental Technology and Innovation 2020; 17: 100503.
(13)           Irawati W., Wijaya Y., Christian S., Djojo ES. Characterization of heavy metals resistant yeast isolated from activated sludge in Rungkut, Surabaya, Indonesia as biosorbent of mercury, copper, and lead. AIP Conference Proceedings, Yogyakarta, Indonesia; 2016.
(14)           Nasr S., Bien S., Soudi MR., Alimadadi N., Fazeli SAS., Damm U. Novel collophorina and coniochaeta species from euphorbia polycaulis, an endemic plant in Iran. Mycological Progress 2018; 17(6): 755-771.
(15)           Jeoung M-S., Choi H-S. Spectrophotometric determination of trace Hg (II) in cetyltrimethylammonium bromide media. Bulletin of the Korean Chemical Society 2004; 25(12): 1877-1880.
(16)           Tajer-Mohammad-Ghazvini P., Kasra-Kermanshahi R., Nozad-Golikand A., Sadeghizadeh M., Ghorbanzadeh-Mashkani S., Dabbagh R. Cobalt separation by Alphaproteobacterium MTB-KTN90: magnetotactic bacteria in bioremediation. Bioprocess and Biosystems Engineering 2016; 39(12): 1899-1911.
(17)           Piroeva I., Atanassova-Vladimirova S., Dimowa L., Sbirkova H., Radoslavov G., Hristov P., et al. A simple and rapid scanning electron microscope preparative technique for observation of biological samples: application on bacteria and DNAsamples. Bulgarian Chemical Communications 2013; 45(4): 510-515.
(18)           Vijayaraghavan K., Yun Y-S. Bacterial biosorbents and biosorption. Biotechnology Advances 2008; 26(3): 266-291.
(19)           Aswathanarayana U. Water resources management and the environment. AA Balkema Publisher. The Netherlands: Taylor and Francis, CRC Press; 2001.
(20)           Wu TY., Guo N., Teh CY., Hay JXW. Advances in ultrasound technology for environmental remediation. The Netherlands: Springer Science and Business Media; 2012.
(21)           Hlihor R-M., Apostol L-C., Gavrilescu M. Environmental bioremediation by biosorption and bioaccumulation: Principles and applications. Enhancing Cleanup of Environmental Pollutants 2017 289-315.
(22)           Hansda A., Kumar V. A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation. World Journal of Microbiology and Biotechnology 2016; 32(10): 170.
(23)           Sharma SK. Bioremediation: A sustainable approach to preserving earth’s Water. Boca Raton, Florida, USA: Taylor and Francis,
(24)           Ismail I., Moustafa T. Biosorption of heavy metals. Heavy Metals; 2016: 131.
(25)           Oyewole OA., Adamu BB., Oladoja EO., Balogun AN., Okunlola BM., Odiniya EE. A review on heavy metals biosorption in the environment. Brazilian Journal of Biological Sciences 2018; 5(10): 225-236.
(26)           Rengaraj S., Moon S-H. Kinetics of adsorption of Co (II) removal from water and wastewater by ion exchange resins. Water Research 2002; 36(7): 1783-1793.
(27)           Ghorbanzadeh Mashkani S., Tajer Mohammad Ghazvini P. Biotechnological potential of Azolla filiculoides for biosorption of Cs and Sr: Application of micro-PIXE for measurement of biosorption. Bioresource Technology 2009; 100(6): 1915-1921.
(28)           Malekzadeh F., Mashkani SG., Ghafourian H., Soudi MR. Biosorption of tungstate by a Bacillus sp. isolated from Anzali lagoon. World Journal of Microbiology and Biotechnology 2007; 23(7): 905-910.
(29)           Eivazi E. Application of Pseudomonas putida bacterium for Te separation from aqueous solutions [Dissertation] Tehran: Univesity of Tehran; 2019.
(30)           Suhasini I., Sriram G., Asolekar S., Sureshkumar G. Biosorptive removal and recovery of cobalt from aqueous systems. Process Biochemistry 1999; 34(3): 239-247.
(31)           Mameri N., Boudries N., Addour L., Belhocine D., Lounici H., Grib H., et al. Batch zinc biosorption by a bacterial nonliving Streptomyces rimosus biomass. Water Research 1999; 33(6): 1347-1354.
(32)           Saglam A., Yalcinkaya Y., Denizli A., Arica M., Genc Ö., Bektas S. Biosorption of mercury by carboxymethylcellulose and immobilized Phanerochaete chrysosporium. Microchemical Journal 2002; 71(1): 73-81.